Contribution of ventral blood island mesoderm to hematopoiesis in postmetamorphic and metamorphosis-inhibited Xenopus laevis.


In an effort to label very early erythrocyte and lymphocyte populations and to follow their fate in normally developing postmetamorphic frogs and goitrogen-treated permanent larvae, diploid (2N) and triploid (3N) ventral blood island (VBI) mesoderm was exchanged between neurula stage embryos (about 16-22 hr old). Beginning at 15 days of age, half of the 2N or 3N hosts were treated with sodium perchlorate to prevent thyroxine-induced developmental changes. At larval stages 55-59 (41-48 days) and at 1-2 months postmetamorphosis (110-120 days), the untreated control chimeras and age-matched perchlorate-treated chimeras were killed for analysis of the VBI contribution to blood, spleen, and thymus populations by flow cytometry. The data suggest that grafting of ventral blood island mesoderm is an effective way to label an early larval erythrocyte population that declines after metamorphosis. In perchlorate-blocked permanent larvae this early VBI-derived erythrocyte population persists. In contrast, grafting of VBI mesoderm was less useful as a method to label a larvally distinct lymphocyte population in the thymus and spleen. At the late larval stages that we examined, the proportion of VBI-derived cells in thymus and spleen was not different from that observed after metamorphosis. Inhibition of metamorphosis interfered with the thymocyte expansion that normally occurs after metamorphosis, but the proportion of VBI-derived cells in thymus and spleen was not affected. This suggests that lymphopoiesis occurring in late larval life and after metamorphosis uses a stable persisting population of VBI-derived stem cells as well as dorsally derived stem cells.